The *trans*-Influence of the Ligand Trimethylsilylmethylide (Me₃SiCH₂⁻) in Platinum(II) Complexes and the Crystal Structure of a Platinum(II) Alkyl

By M. R. Collier, C. Eaborn, Borjana Jovanović, M. F. Lappert,* Ljubica Manojlović-Muir,

K. W. MUIR, and MARGARET M. TRUELOCK

(School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ)

Summary Spectroscopic and crystallographic data are presented for trans-[PtCl(CH₂SiMe₃)(PMe₂Ph)₂]; by comparison of data for cis-[Pt(CH₂Y)₂(PMe₂Ph)₂] and trans-[PtCl(CH₂Y)(PMe₂Ph)₂] (Y = H, Ph, or Me₃Si) it is concluded that the trans-influence of the ligands decreases in the order Ph₂MeSi⁻ > YCH₂⁻, and that the group Y has a minor role.

TRANSITION-METAL compounds MR_n containing Me_3SiCH_2 ligands are often very stable.¹ This has been attributed largely to kinetic effects. On the other hand, in compounds such as π -C₅H₅Mo(CO)₃CH₂SiMe₃, the Si-C bond is readily cleaved by nucleophiles.² In organic compounds both Me_3Si and Me_3SiCH_2 groups are normally assumed to release electrons by an inductive mechanism, though for the Me_3Si group this can be masked by $(p-d)\pi$ bonding³ (but see ref. 4). Furthermore, the Me_3SiCH_2 group has an exceptionally large electron-releasing effect when attached to an electrondeficient or π -bonded carbon atom,^{4,5} and this is attributed to hyperconjugation (σ - π conjugation) from the Me_3SiCH_2 bond.⁴ In transition-metal complexes the electronic effect of this and similar ligands is still an open question.

It has been shown, from i.r.⁶ and structural data⁷ on trans-[PtCl(SiMePh₂)(PMe₂Ph)₂], that Ph₂MeSi- is a ligand of exceptionally strong trans-influence and comparison with Me₃SiCH₂- is thus of interest. We have therefore investigated, by spectroscopic and X-ray methods, the structural features of platinum(II) complexes containing the ligand Me₃SiCH₂-.

The J (¹⁹⁵Pt-³¹P) coupling constants for *cis*-[PtR₂P₂] complexes and ν (Pt-Cl) for *trans*-[PtClRP₂] complexes, (P = tertiary phosphine), are presented in Table 1, together

with comparative data. These relate to eight compounds, four of them previously unknown, which were fully characterized by elemental analyses, and i.r. and n.m.r. spectra. It was remarkably difficult to prepare $[PtCl(CH_2SiMe_3)-(PMe_2Ph)_2]$ from either (i) $[PtCl_2(PMe_2Ph)_2]$ and Me_3SiCH_2Li or Me_3SiCH_2MgCl , or (ii) cis- $[Pt(CH_2SiMe_3)_2(PMe_2Ph)_2]^{\$}$.

TABLE 1

trans-Influence in	Pt^{II} complexes	and some spect	roscopic data
--------------------	---------------------	----------------	---------------

R	$J (1^{195} Pt-^{31}P) (kHz)^{s}$ for cis-[PtR ₂ (PMe ₂ Ph) ₂]	v (Pt-Cl) (cm ⁻¹) ^b for trans-[Pt(Cl)R(PMe_2Ph)_2]:
Me PbCH	1.846 1.933¢	284 (ref. 9)
Me.SiCH.	1.999d	272°
Ph ₂ MeSi	1.559 (ref. 11)	242 (ref. 6)
CI -	3.549 (ref. 12)	340

• From ³¹P n.m.r. in C₆H₆, or (R = Cl) CH₂Cl₂. ^b In polyethylene discs. ^c cis-[Pt(CH₂Ph)₂(PPhMe₂)₂], m.p. 136°, in 43% yield from the cis-dichloride + 2RMgCl in Et₂O at 20°. ^d cis-[Pt(CH₂SiMe₃)₂(PMe₂Ph)₂], m.p. 51·5—52°, in 81% yield from the cis-dichloride in C₆H₆ + 2RLi in Et₂O at 0°. ^e irans-[PtCl(CH₂SiMe₃)(PMe₂Ph)₂], m.p. 118°, in 100% yield from cis-[Pt(Cl)R(PMe₂Ph)₂] {itself obtained, m.p. 100°, in 93% yield from cis-[Pt(CH₂SiMe₃)₂(PMe₂Ph)₂]} + HCl (1 mol) in Et₂O at -78°] and a trace of PMe₂Ph.

and HCl, because stepwise replacement was difficult to control, and this was much more evident than for the related [PtClMe(PMe_2Ph)_2].⁹ Ultimately, route (ii) proved practicable, provided the chlorodealkylation was carried out at -78° . The synthesis of *trans*-[PtCl(CH₂SiMe_3)(PMe_2Ph)_2]^{*} was completed (see equation) by conversion of the *cis*-isomer into a *cis-trans* equilibrium mixture (in about equal

TABLE 2 trans-Influence in Pt^{II} complexes and some X-ray data

Compound	L	(Pt–L) Å	[Pt-Cl(trans to L)] Å
$trans-[PtCl(CH_2SiMe_3)(PMe_2Ph)_2]$	С	2.079(14)	2.415(5)
cis-[PtCl2CH{CH2 ^H H2CH(Me)Ph}CH2CH2CH=CH1]* trans-[PtCl(SiMePh2)(PMe2Ph)2] ^b trans-[PtCl2(PEt3)2] ^c	C Si Cl	2·05 2·29 2·294(9)	2·430 2·45(1) 2·294(9)

* Ref. 13. ^b Ref. 7, 14. ^c Ref. 15.

amounts) by addition of a trace of PMe₂Ph followed by chromatographic separation. The formation of an equilibrium mixture in this way is unusual (cf., methyl analogue), and may be due to steric effects, as has been argued for $[PtX_2P_2]$ isomerizations (X = Cl, Br; and P = PMe₃, PEt₃, or PPr₃).¹⁰

The structure of trans-[PtCl(CH₂SiMe₃)(PMe₂Ph)₂] has been determined by X-ray methods. The compound crystallizes well in a monoclinic unit cell of dimensions $a = 8.919(4), b = 21.723(7), c = 13.865(3) \text{ Å}, \beta = 113.88(3)^{\circ}.$ The space group is Cc. The structure was solved from 2573 diffractometric intensity data, corrected for absorption, and refined by full-matrix least-squares methods to a conventional R-factor of 0.039. Structural details are presented in the Figure and Table 2, with comparative data.

Both the spectroscopic and crystallographic data (Tables 1 and 2) support the following conclusions: (a) the transinfluence of the alkyl ligands YCH₂- is large compared with that of chloride, but still considerably smaller than that of Ph_2MeSi^- ; (b) the trans-influence of YCH_2^- is not significantly influenced by the nature of Y, when Y = H, Ph, or SiMe₃.

 $\frac{\text{HCl}}{\text{cis-[Pt(CH_2SiMe_3)_2(PMe_2Ph)_2]}} \xrightarrow{\text{HCl}} \text{cis-[PtCl(CH_2SiMe_3)(PMe_2Ph)_2]} \xrightarrow{\text{trace}} \text{trans-[PtCl(CH_2SiMe_3)(PMe_2Ph)_2]} \xrightarrow{\text{trace}} \text{trans-[PtCl(CH_2SiMe_3)(PMe_2Ph)_2]}$ trace PMe_sPh

Since the trans-influence of the Me₃SiCH₂- is little different from that of the Me- ligand, and markedly smaller than that of the Ph₂MeSi- ligand, it is concluded that electrons are not released by hyperconjugation from Me_sSi-C or H-C bonds to platinum in the platinum(II)

complexes examined.

We thank the S.R.C. for support and Engelhard, Ltd., for a loan of platinum.

(Received, 20th March 1972; Com. 448.)

¹ M. R. Collier, M. F. Lappert, and M. M. Truelock, J. Organometallic Chem., 1970, 25, C36; G. Yagupsky, W. Mowat, A. Shortland, and G. Wilkinson, Chem. Comm., 1970, 1369; F. Huq, W. Mowat, A. Shortland, A. C. Skapski, and G. Wilkinson, ibid, 1971, 1079; F. Huq, W. Mowat, A. C. Skapski, and G. Wilkinson, ibid., p. 1477.
⁹ M. R. Collier, B. M. Kingston, and M. F. Lappert, Chem. Comm., 1970, 1498.
⁹ C. Eaborn, 'Organosilicon Compounds', Butterworths, 1960, pp. 94-103; E. A. V. Ebsworth, 'Organometallic Compounds of the Group IV Elements', ed. A. C. MacDiarmid, vol. 1, Part 1, 1968, pp. 86-88.
⁶ C. G. Pitt, J. Organometallic Chem., 1970, 23, C35; Chem. Comm., 1971, 816.
⁶ C. Eaborn, J. Chem. Soc., 1956, 4858; M. A. Cook, C. Eaborn, and D. R. M. Walton, J. Organometallic Chem., 1970, 24, 293; T. G. Traylor, W. Harstein, H. J. Berwin, N. A. Clinton, and R. S. Brown J. Amer. Chem. Soc., 1971, 93, 5715.
⁶ J. Chatt, C. Eaborn, and S. D. Ibekwe, Chem. Comm., 1966, 700; J. Chatt, C. Eaborn, S. D. Ibekwe, and P. N. Kapoor, J. Chem. Soc. (A), 1970, 1343.

Soc. (A), 1970, 1343.

- ⁶ R. McWeeny, R. Mason, and A. D. C. Towl, Discuss. Faraday Soc., 1969, 47, 20.
 ⁶ B. Wozniak, J. D. Ruddick, and G. Wilkinson, J. Chem. Soc. (A), 1971, 3116.
 ⁹ J. D. Ruddick and B. L. Shaw, J. Chem. Soc. (A), 1969, 2801.
 ¹⁰ J. Chatt and R. G. Wilkins, J. Chem. Soc., 1956, 525.
 ¹¹ R. T. Haston and A. Bidesolt, L. Crassmandellia, Chem. 1969, 14, 225.

- ¹¹ B. T. Heaton and A. Pidcock, *J. Organometallic Chem.*, 1968, 14, 235. ¹³ S. O. Grim, R. L. Keiter, and W. McFarlane, *Inorg. Chem.*, 1967, 6, 113.
- ¹³ C. Pedone and E. Benedetti, J. Organometallic Chem., 1971, 31, 403.
- ¹⁴ R. Mason, personal communication, see also ref. 7.
- ¹⁶ G. G. Messmer and E. L. Amma, Inorg. Chem., 1966, 5, 1775.